On a uniqueness property of supercuspidal unipotent representations
نویسندگان
چکیده
منابع مشابه
Construction of Tame Supercuspidal Representations
The notion of depth is defined by Moy-Prasad [MP2]. The notion of a generic character will be defined in §9. When G = GLn or G is the multiplicative group of a central division algebra of dimension n with (n, p) = 1, our generic characters are just the generic characters in [My] (where the definition is due to Kutzko). Moreover, in these cases, our construction literally specializes to Howe’s c...
متن کاملSupercuspidal Representations: an Exhaustion Theorem
Let k be a p-adic field of characteristic zero and residue characteristic p. Let G be the group of k-points of a connected reductive group G defined over k. In [38], Yu gives a fairly general construction of supercuspidal representations of G in a certain tame situation. In this paper, subject to some hypotheses on G and k, we prove that all supercuspidal representations arise through his const...
متن کاملUnipotent Automorphic Representations : Conjectures
In these notes, we shall attempt to make sense of the notions of semisimple and unipotent representations in the context of automorphic forms. Our goal is to formulate some conjectures, both local and global, which were originally motivated by the trace formula. Some of these conjectures were stated less generally in lectures [2] at the University of Maryland. The present paper is an update of ...
متن کاملTypes for supercuspidal representations of GL(N)
We recall here the basic definitions needed to construct simple types, with no proofs given of the many claims that we make. For a much more detailed account, see [1] and the many other sources cited therein. Note that most of the statements made here could be proven without much difficulty for the reader who has the time and inclination. Any statements requiring a much more elaborate proof are...
متن کاملOn a uniqueness property of harmonic functions
We investigate the problem of uniqueness for functions u harmonic in a domain Ω and vanishing on some parts of the intersection (not necessarily connected) of Ω with a line m. It turns out that for some configurations u must vanish on the whole intersection of m and Ω, but this is not always the case. Generalizations to solutions of more general analytic elliptic equations are discussed as well.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107406